REVIEW ARTICLE

Nausea and Vomiting After Surgery Under General Anesthesia

An Evidence-Based Review Concerning Risk Assessment, Prevention, and Treatment

Dirk Rüsch, Leopold H. J. Eberhart, Jan Wallenborn, Peter Kranke

SUMMARY

Background: The German-language recommendations for the management of postoperative nausea and vomiting (PONV) have been revised by an expert committee. Major aspects of this revision are presented here in the form of an evidence-based review article.

<u>Methods:</u> The literature was systematically reviewed with the goal of revising the existing recommendations. New evidence-based recommendations for the management of PONV were developed, approved by consensus, and graded according to the scheme of the Scottish Intercollegiate Guidelines Network (SIGN).

Results: The relevant risk factors for PONV include female sex, nonsmoker status, prior history of PONV, motion sickness, use of opioids during and after surgery, use of inhalational anesthetics and nitrous oxide, and the duration of anesthesia. PONV scoring systems provide a rough assessment of risk that can serve as the basis for a riskadapted approach. Risk-adapted prophylaxis, however, has not been shown to provide any greater benefit than fixed (combination) prophylaxis, and PONV risk scores have inherent limitations; thus, fixed prophylaxis may be advantageous. Whichever of these two approaches to manage PONV is chosen, high-risk patients must be given multimodal prophylaxis, involving both the avoidance of known risk factors and the application of multiple validated and effective antiemetic interventions. PONV should be treated as soon as it arises, to minimize patient discomfort, the risk of medical complications, and the costs involved.

Klinik für Anästhesie und Intensivtherapie Universitätsklinikum Gießen und Marburg GmbH: Priv.-Doz. Dr. med. Rüsch, Prof. Dr. med. Eberhart, MA

Klinik für Anästhesiologie und Intensivtherapie Universitätsklinikum Leipzig: Priv.-Doz. Dr. med. Wallenborn

Klinik und Poliklinik für Anästhesiologie Universitätsklinikum Würzburg: Univ.-Prof. Dr. med. Kranke, MBA <u>Conclusion:</u> PONV lowers patient satisfaction but is treatable. The effective, evidence-based measures of preventing and treating it should be implemented in routine practice.

Cite this as

Rüsch D, Eberhart LHJ, Wallenborn J, Kranke P: Nausea and vomiting after surgery under general anesthesia —an evidence-based review concerning risk assessment, prevention, and treatment. Dtsch Arztebl Int 2010; 107(42): 733–41. DOI: 10.3238/arztebl.2010.0733 The incidence of postoperative nausea and vomiting (PONV) after general anesthesia is up to 30% when inhalational anesthetics are used with no prophylaxis. This makes PONV one of the most common complaints following surgery under general anesthesia, together with postoperative pain (1).

As anesthesia is administered approximately 8 million times per year in Germany for surgery, this means that up to 2.4 million patients suffer from PONV every year (e1) if no prophylaxis is provided.

While anesthesia-related mortality and morbidity have fallen dramatically in recent decades, the outcome parameters wellbeing and patient satisfaction are becoming increasingly important (e2). These are considerably affected by PONV (2-4, e3). Financial issues are also significant, as PONV can lead to a substantial prolongation of time in the recovery room with increased costs of personal care (e4) and in pediatric patients PONV is the most common cause of the approximately 1% to 2% of unplanned hospitalizations following outpatient surgery (e5, e6). Despite their rarity, serious complications caused by PONV which are described in case reports, such as aspiration pneumonia, Boerhaave's syndrome, severe subcutaneous emphysema, pneumothorax, rupture of the trachea and loss of vision, provide a warning that this problem is not to be underestimated (e7-e14).

In the German-speaking world, recommendations for preventing and treating PONV were first published in 2007. They were based on searches of the literature up to 2005 and therefore require revision due to new findings (5). Although the recommendations of the Society for Ambulatory Anesthesia (SAMBA), also published in 2007, were based on searches of the literature up to 2006, they require a high level of abstraction because of their claim to international validity. For the Germanspeaking world, this level of abstraction is difficult to translate directly into treatment recommendations (6).

This review of PONV prevention and treatment is based on a systematic review of the literature with subsequent assessment according to the levels of evidence and grades of recommendations within the framework of expert consensus dating from 2009 (March 30, 2009, Frankfurt am Main, Germany). It can be taken as a

TABLE 1

Levels of evidence and grades of recommendations according to the Scottish Intercollegiate Guidelines Network (SIGN) (e15)

Level o	fevidence	Grade o	of recommendation		
	Requirements		Requirements		
1++	High quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias	A	At least one meta-analysis, systematic review, or RCT rated as 1++, and directly applicable to the target population; <i>or</i> A body of evidence consisting principally of studies rated as 1+, directly applicable to the target popu- lation, and demonstrating overall consistency of result		
1+	Well-conducted meta-analyses, systematic reviews, or RCTs with a low risk of bias				
1 –	Meta-analyses, systematic reviews, or RCTs with a				
	high risk of bias	В	A body of evidence including studies rated as 2++, directly applicable to the target population, and demonstrating overall consistency of results; or		
2++	High quality systematic reviews of case control or cohort or studies High quality case control or cohort studies with a very		Extrapolated evidence from studies rated as 1++ or 1+		
	low risk of concounding or bias and a high probability that the relationship is causal	С	A body of evidence including studies rated as 2+, directly applicable to the target population and demor strating overall consistency of results; <i>or</i> Extrapolated evidence from studies rated as 2++		
2 +	Well-conducted case control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal				
2 –	Case control or cohort studies with a high risk of con- founding or bias and a significant risk that the relation- ship is not causal	D	Evidence level 2 or 4, or		
		D	Evidence level 3 or 4; <i>or</i> Extrapolated evidence from studies rated as 2+		
3	Non-analytic studies, e.g. case reports, case series				
4	Expert opinion				

basis for incorporation into Standard Operating Procedures (SOPs) in the German-speaking world.

Methods

The recommendations were developed by an expert committee. All participants had many years' clinicallyoriented scientific experience in the subject. Before beginning the work, relevant key subjects were presented to the participants for their expert opinions. The subjects were researched using Medline, entering search terms related to each subject in combination with established search algorithms for PONV (including "PONV"; "postoperative" AND ["nausea" OR "vomiting" OR "retching"]). They were then presented and discussed at the plenum, taking the available evidence (published up to and including February 2009) into account. Statements on which agreement had been reached were given a grade of recommendation according to the stipulations of the Scottish Intercollegiate Guidelines Network (SIGN) (Table 1; e15). Where there was disagreement, repeat discussions were held using iterative round emails to the participants (modified Delphi technique). In the event of any further disagreement, the disputes were recorded in the manuscript.

PONV risk factors and PONV prognosis systems

The pathogenesis of PONV is still largely unclear. However, in recent years it has been possible to identify a number of risk factors for the occurrence of PONV in adults using multivariate methods (1, 7–11, e16–e22). An overview of the risk factors confirmed by several independent studies is provided in *Table 2*. Results regarding the effect of the type of operation on the risk of PONV are varied, and discussion of them both at the plenum and in the literature therefore includes conflicting opinions (5, 6).

As none of the risk factors listed in *Table 2* alone is sufficiently able to predict PONV, various prognosis systems have been developed. These have a prediction accuracy rate of approximately 70% (1, 7, 12, e18, e23). Due to the heterogeneous nature of the values of the available scores, and given that the predictive value depends on the decision-making criterion in question (number of risk factors) and the prevalence of the disorder (PONV), we refer to further reading in the literature for more detailed description (8, 9). Simplified PONV prognosis systems (*Table 3*) have been shown to have the same prediction ability as more complex PONV prognosis systems (grade B). They are therefore to be used in preference to more complex systems to assess the risk of PONV, as they are more practicable (grade D; e20, e24).

PONV prevention

An essential part of PONV prevention is the avoidance of confirmed emetogenic factors. Where possible, regional anesthesia should be used, as it is associated with a significantly lower risk of PONV in adults than general anesthesia (grade B; [10, e25]). If general anesthesia is administered, using propofol rather than volatile anesthetics to maintain anesthesia is an effective way of reducing the incidence of PONV (relative risk reduction [RRR] of approximately 19%; grade A; [13, 14]). Not using nitrous oxide is another option for risk reduction (RRR = approximately 12%; grade A; [14, e26]). Avoidance or reduced doses of opioids during (grade B) and after surgery (grade B) also leads to a lower incidence of PONV (1, 13, e27, e28). To this end, non-opioids and/or regional anesthesia, among other options, can be used.

Drug-based PONV prevention

Many different substances belonging to different drug groups are available for drug-based PONV prevention. Today most substances are understood to act as antagonists on specific receptors in the area postrema and on free nerve endings of the vagus nerve. A summary of the most widely-used drugs available in Germany today is provided in *Table 4*.

Adjuvants and non-drug-based PONV prevention

According to the results of a recent meta-analysis, increased inhaled oxygen concentration has no significant effect in preventing PONV (grade A; [e46]). This is also true of ginger and ginger extracts (grade A; [e47]). The panel considered the data on the effect of aromatherapy involving isopropyl alcohol in preventing PONV to be insufficient for providing recommendations (grade D; [e48]).

Studies that have investigated the effect of perioperative fluid replacement on the incidence of PONV are too heterogeneous in terms of both different fluid replacement regimens and results to serve as a valid basis for PONV-prevention recommendations at present (grade D; [e49–e52]).

According to the results of a Cochrane Review, stimulation of acupuncture point P6 on the wrist has been shown to be superior to a placebo (e.g. sham acupuncture) in preventing both nausea (relative risk [RR] 0.72; 95% confidence interval [95% CI] 0.58–0.89) and vomiting (RR 0.71; 95% CI 0.56–0.91) (e53). However, due to study design and its weaknesses regarding treatment blinding, and considerable heterogeneity (e.g. regarding the time of treatment), these conclusions must be interpreted with care (e54). An update of the Cochrane Review on P6 stimulation which included better-designed studies shows again that these treatments achieve a significant reduction in nausea (RR 0.71; 95% CI 0.61–0.83) and vomiting (RR 0.7; 95%

TABLE 2

Risk factors for PONV		
Group	Risk factor ¹	Recommendation gra
Patient-dependent	Female sex	В
	History of PONV	В
	Motion sickness	В
	Nonsmoker status	В
Anesthesia-dependent	Volatile anesthetics	А
	Duration of anesthesia (risk increases relatively by approx. 60% every 30 min)	В
	Nitrous oxide	А
Surgery-dependent	Type of operation	D
General	Postoperative opioid administration	А
	Intraoperative opioid administration	А

*¹The risk factors listed in each group are ordered according to severity (from most to least severe)

CI 0.59–0.83) as compared to a placebo, with minimum side effects in adults and children (grade B; [16]), which ultimately led to a positive overall assessment of this method for PONV prevention in adults and children. Nevertheless, P6 stimulation was awarded a SIGN grade B recommendation in the face of continuing uncertainty regarding its mechanism of action and data which remain very heterogeneous.

Combination prophylaxis and multimodal antiemetic treatment

When deciding on PONV prophylaxis, the following key aspects must be considered:

- For dexamethasone, droperidol and ondansetron, a comparable antiemetic efficacy with a relative risk reduction (RRR) for PONV of approximately 26% has been demonstrated (grade A; [14]).
- Total intravenous anesthesia (TIVA) with propofol instead of volatile anesthetics and air instead of nitrous oxide has been shown to be comparably effective (RRR 31%) (grade A; [14]).
- The effects of a combination of these antiemetic measures (dexamethasone, droperidol, ondanse-tron and TIVA) are cumulative (grade A; [14]).
- It can be assumed that the results showing a comparable risk reduction for antiemetic measures and the cumulative nature of the efficacy of antiemetic treatment (combinations of antiemetics from different classes) are also valid for the other drug-based measures described in *Table 4* (grade B).
- There is no evidence to date that a specific antiemetic is especially effective for a particular patient profile or a particular operation (grade B; [13]).

TABLE 3

Validated, simplified PONV prognosis systems for adults and children, stating the risk factors involved and calculated incidences of PONV

Prognosis system	Koivuranta et al. (7)	Apfel et al. (1)	Eberhart et al. (12)	
Patient population	Adults	Adults	Children	
Risk factors	Female sex	Female sex	Age >3 years	
	Prior history of PONV	History of PONV History of motion sickness	History of PONV or motion sickness in the child or a first-degree relative	
	Prior history of motion sickness			
	Nonsmoker status	Nonsmoker status	Strabismus surgery	
	Length of operation >60 min	Expected postoperative administration of opioids	Length of operation >30 min	
Calculated incidenc	e of PONV with n risk factors prese	ent (sum of the risk factors listed abo	ve)	
n	%	%	%	
0	17	10	9	
1	18	21	10	
2	42	39	30	
3	54	61	55	
4	74	79	70	
5	87	Not stated	Not stated	

The higher the underlying risk of PONV, the more components from the available antiemetic portfolio are needed to achieve a PONV risk of less than 20% (grade A; [14]). By using a multimodal approach (grade A), it has been possible to achieve a dramatic reduction in the incidence of PONV (less than 10%) and an increase in patient satisfaction, even for high-risk patients with an underlying PONV risk of more than 80% (2, e55).

PONV treatment

When PONV occurs, prompt treatment is indicated, as the likelihood of PONV to persist or to recur is at least 65% (grade A; [11, 17]).

Only 5HT₃ receptor antagonists have been fully researched for PONV treatment and confirmed as being effective (grade A; [18]). They are, therefore, first-line drugs for treatment of PONV, especially when no prophylaxis has been administered beforehand (grade D). The data available on all the other drugbased and non-drug-based methods described above is less extensive, although dexamethasone (grade A), haloperidol (grade A), dimenhydrinate (grade B) and promethazine (grade C) have been shown to be effective in treating PONV (19, e56, e57).

As those interventions that have proven to be effective (grade A) for treatment of PONV have also been shown to be similarly effective (grade A) for prophylaxis of PONV, there is consensus that the reverse is also true: All interventions for which it has been possible to demonstrate the highest level (grade A) of validated efficacy in preventing PONV, efficacy in treating PONV can also be assumed, and these measures can therefore also be recommended as treatment (grade B). Drug-based measures associated with slow onset of effect (e.g. dexamethasone, scopolamine) should not be used as monotherapy, but only in combination with a fast-acting substance as part of treatment (grade D).

For reasons of practicability, the same doses as those used for prevention are also recommended for treatment (grade D), even though for some substances (e.g. ondansetron) it has been shown that lower doses are also effective for treatment (18).

If PONV occurs despite prophylaxis, the primary recommendation (particularly in the immediate postoperative phase) is to administer a substance from another drug group (grade A; [20, e56, e57]).

In PONV treatment, combination therapy should be considered, as despite treatment the recurrence rate of PONV over the subsequent 24 hours is 35% to 50%, and the combination of dexamethasone plus dolasetron or haloperidol has already been shown to be superior to monotherapy (grade A; [17–19]). A comparable effectiveness as part of combination therapy can also be assumed for other combinations of established antiemetics (grade D).

PONV in children

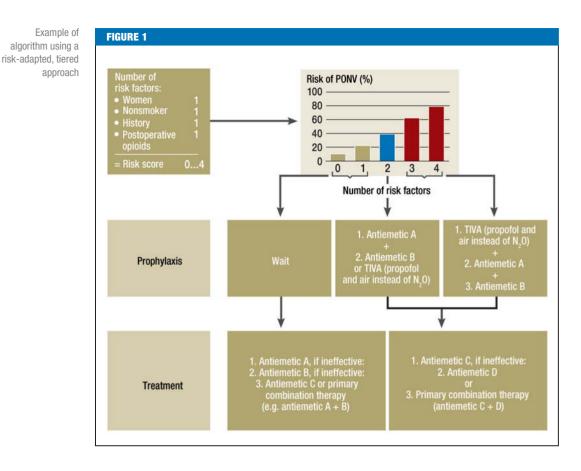

The incidence of PONV is strongly age-dependent. While children under 3 years of age are rarely affected,

TABLE 4

Active substance	Substance group	Dose for adults	Dose for children	Recommen- dation grade (literature)	Time of application	Recom- men- dation grade (literature)	Adverse effects and contra- indications	Remarks
Dexametha- sone	Corticosteroids	4–8 mg	0.1–0.15 mg	A (14, 15, e29 –e31)	At induction	B (e32)	AEs: increased BG, hypo-/hypertension Rel. CI: diabetes mellitus	Mechanism of action still un- clear
Granisetron	Serotonin antag-	1 mg	0.02 mg/kg	A (14, 15, e33 –e36)	End of surgery	B (e37)	AEs: headaches, constipation, raised liver enzymes CI: increased QT interval on ECG	Ongoing: phar- macogenetic studies
Ondansetron	onists (5-HT ₃ re- ceptors)	4 mg	0.1 mg/kg					
Palonosetron		0.075 mg	No data					
Tropisetron		2 mg	0.1 mg/kg					
Droperidol	Dopamine antag- onists: butyrophe- none (D ₂ recep-	0.625–1.25 mg	0.01–0.015 mg/kg	A (14, 15, e33, e38)	End of surgery	A (e38)	AEs: psychomi- metic, extrapyra- midal disturbance, sedation CIs: Parkinson's disease, increased QT interval	2nd choice for children
Haloperidol	tors)	1–2 mg	No data	A (e39, e40)	No effect on efficacy	B (e41)		
Metoclopramide	Dopamine antag- onists: benzamide (D ₂ receptors)	25–50 mg	0.15 mg/kg	A (11, 15)	30 min prior to end of surgery	D	AEs: extrapyrami- dal disturbance, hypotension (fast injection)	2nd choice for children
Dimenhydrinate	Histamine antag- onists (H ₁ recep- tors)	62 mg	0.5 mg/kg	A (13, e42)	Intra- operatively	D	AE: sedation	
Scopolamine	Anticholinergics (muscarinergic acetylcholine receptors)	1 mg/24 hrs	No data	A (e43)	Evening prior to surgery or at induction	A (e43)	AEs: dizziness, dry mouth, accommo- dation disturbances	
Aprepitant	Neurokinin antag- onists (NK ₁ recep- tors)	40 mg (avail- able only as 80 and 125 mg capsules in Germany)	No data	A (e44, e45)	Together with preoperative medication (currently only available orally)		AEs: headaches, constipation	To be consid- ered for patients at high risk of PONV. Only available to be taken orally. Fosaprepitant (can be used IV) = off-label use

Overview of available antiemetics with well-researched efficacy in preventing PONV

The receptors stated in brackets in the second column are the receptors on which the drug groups indicated in the first line have antiemetic effects. Doses stated are for intravenous administration (except for aprepitant). Side effects listed are the symptoms frequently reported in PONV studies. Level and grade of recommendations according to SIGN criteria; AE: adverse effect; CI: contraindication; BG: blood glucose; ECG: electrocardiogram; IV: intravenous.

from the age of 3 onwards there is a steady increase, peaking between 5 and 9 years of age (e58).

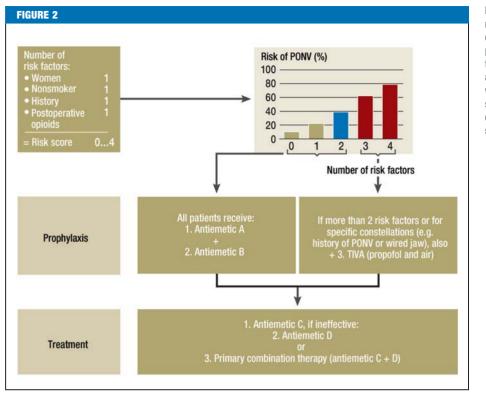
The PONV prognosis systems developed for adults are not suitable for pediatric patients (21). As nausea is difficult to identify in infants and small children, studies of PONV in this patient population are usually limited to the onset of postoperative vomiting (POV). On the basis of risk factors which are well identified in pediatric patients, a simplified prognosis system for children (the Postoperative Vomiting in Children, or POVOC, score, see *Table 3*) has also been developed (12).

Essentially, the same PONV prophylaxis and treatment methods are used as for adults. *Table 4* provides an overview of the dosing for drug-based prevention and treatment. Despite recent disputes regarding the use of dexamethasone, according to the current recommendations of the Task Force for Pediatric Anesthesia of the German Society of Anesthesia administration of 0.15 mg/kg dexamethasone is also considered acceptable in order to prevent PONV (grade A) for adenoidectomies/tonsillectomies (AT/TE) (grade D; [e59, e60]).

Opioid-induced nausea and opioid-induced vomiting

Around 50% of patients who receive opioids as part of patient-controlled analgesia (PCA) suffer from post-operative nausea and vomiting (22).

There are slight differences between opioids in terms of their emetogenic effects:


- Tramadol and buprenorphine are more emetogenic than morphine (grade A; [e61–e71]).
- The emetogenic effects of piritramide, oxycodone and hydromorphone are comparable to those of morphine (grade A; (e72–e76]).
- Fentanyl and remifentanyl are less emetogenic than morphine (grade A; [e77–e84]).

However, these conclusions allow only a limited assessment, using indirect comparison (e.g. comparison of piritramide and fentanyl). Because of the moderate strength of effect, no differential indication exists on opioids to be used perioperatively to reduce PONV (grade D).

Dropiderol (highest daily dose: 4 mg) is the bestresearched substance in the prevention and treatment of nausea and vomiting following PCA and therefore is the first choice for both indications (grade A; [22]). A dose of 8 to 12 mg dexamethasone achieves comparably positive results (grade A; [e85]). There are also comparable data available on the efficacy of $5HT_3$ receptor antagonists (grade A; [e86]). Antiemetics with proven efficacy (grade A) for PONV can essentially also be considered effective for the indication "opioidinduced nausea and opioid-induced vomiting" (grade D).

Prevention and treatment algorithms

As the effectiveness of specific algorithms depends substantially on the risk distribution in a particular

Example of an algorithm using fixed combination prophylaxis for all patients, extended by an additional intervention if there are several risk factors or specific risk constellations

population, no general recommendations can be given to define a single "best" prevention algorithm (grade B; [23]).

The choice of a risk-adapted approach, for example on the basis of a simplified PONV prognosis system, can be advantageous in saving resources in certain patient populations and can also help to identify patients in need of multiple administration of prophylaxis (grade B). A risk-adapted approach is therefore generally able to reduce an institution's incidence of PONV (grade A; [24, e87]). An example of a riskadapted algorithm is provided in *Figure 1*.

Inherent limitations regarding risk prediction (grade B) and repeatedly-reported problems in actually implementing a risk-adapted individual approach as part of patient care (grade A) support a risk-independent, standardized approach to prophylaxis (8, 25, e88, e89, e90). The costs of care and the side effect profile of many antiemetics present no obstacle to widespread, liberal use, which means that using a risk-independent algorithm such as a general, fixed dual combination (Figure 2) is absolutely justified on the basis of easy implementation. In simulations, the efficacy of this strategy is comparable to a risk-adapted approach, without being undermined by a restrictive dependency on PONV prognosis systems (grade D; [23]). A standardized, risk-independent approach to prophylaxis also has the advantage that standardized-and therefore presumably associated with better compliance-treatment of PONV is also possible.

It is important that both a risk-adapted and a fixed, risk-independent algorithm be modified according to the individual patient's problems (e.g. in patients with wired jaws, major fear due to previous negative experience), i.e. be extended if necessary (grade D; [e91]).

It seems that monitoring *in situ* practicability and preventing insufficient prophylactic administration of antiemetics is more important than the specific choice of a particular algorithm (grade C; [e91]). The data currently available are insufficient to provide a treatment recommendation based on pharmacogenetic considerations (tailored antiemesis) (grade D; [e92]).

The drug-based interventions listed in *Table 4* and researched in many clinical studies exhibit a very good ratio of benefit to adverse effects according to current knowledge. This justifies liberal prophylactic use, as well as multimodal prophylaxis. However, as the side effect profile of antiemetic interventions is variable, the patient-specific benefit/adverse effects ratio must be considered in the light of the patient's individual profile.

The costs of using these antiemetics are varied. Also, purchase prices for different institutions vary to such an extent that any overall pharmacoeconomic examination based on available price levels soon becomes absurd. In the light of this variability and the range of targets for "acceptable PONV incidence," in combination with risk constellations, which vary from institution to institution, a cost assessment can at best be recommended on the strength of calculations based on the framework parameters of a particular institution (grade D; [23]).

Conflict of interest statement

All the authors received lecture fees and reimbursement of travel costs from Prostakan GmbH and Fresenius-Kabi Deutschland GmbH.

Manuscript received on 22 January 2010, revised version accepted on 13 April 2010.

Translated from the original German by Caroline Devitt, MA.

REFERENCES

- Apfel CC, Laara E, Koivuranta M, Greim CA, Roewer N: A simplified risk score for predicting postoperative nausea and vomiting: conclusions from cross-validations between two centers. Anesthesiology 1999; 91: 693–700.
- Eberhart LH, Mauch M, Morin AM, Wulf H, Geldner G: Impact of a multimodal anti-emetic prophylaxis on patient satisfaction in highrisk patients for postoperative nausea and vomiting. Anaesthesia 2002; 57: 1022–7.
- Eberhart LH, Morin AM, Wulf H, Geldner G: Patient preferences for immediate postoperative recovery. Br J Anaesth 2002; 89: 760–1.
- Myles PS, Williams DL, Hendrata M, Anderson H, Weeks AM: Patient satisfaction after anaesthesia and surgery: results of a prospective survey of 10,811 patients. Br J Anaesth 2000; 84: 6–10.
- Apfel CC, Kranke P, Piper S, et al.: Übelkeit und Erbrechen in der postoperativen Phase – Experten- und evidenzbasierte Empfehlungen zu Prophylaxe und Therapie. Anaesthesist 2007; 56: 1170–80.
- Gan TJ, Meyer TA, Apfel CC, et al.: Society for Ambulatory Anesthesia guidelines for the management of postoperative nausea and vomiting. Anesth Analg 2007; 105: 1615–28.
- 7. Koivuranta M, Laara E, Snare L, Alahuhta S: A survey of postoperative nausea and vomiting. Anaesthesia 1997; 52: 443–9
- Apfel CC, Kranke P, Eberhart LH, Roos A, Roewer N: Comparison of predictive models for postoperative nausea and vomiting. Br J Anaesth 2002; 88: 234–40.
- Apfel CC, Kranke P, Eberhart LH: Comparison of surgical site and patient's history with a simplified risk score for the prediction of postoperative nausea and vomiting. Anaesthesia 2004; 59: 1078–82.
- Sinclair DR, Chung F, Mezei G: Can postoperative nausea and vomiting be predicted? Anesthesiology 1999; 91: 109–18.

KEY MESSAGES

- Identify PONV risk factors and use established prognosis systems to assess the risk of PONV, particularly to identify high-risk patients for whom multimodal prophylaxis is indicated.
- Both an individual, strictly risk-dependent algorithm and a risk-independent algorithm associated with fixed antiemetic administration are possible. Riskindependent prophylaxis is therefore preferable in case of doubt, as it is easier to implement.
- There are a number of compatible, thoroughly-evaluated antiemetics available for use in adults and children. When these substances are combined from groups with different active ingredients, their effects are cumulative.
- Total intravenous anesthesia (TIVA) has an anti-PONV effect only if used intraoperatively and cannot be "made up" in the recovery room or on the ward.
 TIVA should therefore be administered as antiemesis as a high priority, particularly for patients with an above-average risk.
- PONV can be treated as follows: swift administration of drug treatment, as combination therapy if necessary, close monitoring and extension with additional interventions if insufficiently effective.

- Wallenborn J, Gelbrich G, Bulst D, et al.: Prevention of postoperative nausea and vomiting by metoclopramide combined with dexamethasone: randomised double blind multicentre trial. BMJ 2006; 333: 324–7.
- Eberhart LH, Geldner G, Kranke P, et al.: The development and validation of a risk score to predict the probability of postoperative vomiting in pediatric patients. Anesth Analg 2004; 99: 1630–7.
- Apfel CC, Kranke P, Katz MH, et al.: Volatile anaesthetics may be the main cause of early but not delayed postoperative vomiting: a randomized controlled trial of factorial design. Br J Anaesth 2002; 88: 659–68.
- Apfel CC, Korttila K, Abdalla M, et al.: A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. N Engl J Med 2004; 350: 2441–51.
- Carlisle JB, Stevenson CA: Drugs for preventing postoperative nausea and vomiting. Cochrane Database Syst Rev 2006, CD004125
- Lee A, Fan LT: Stimulation of the wrist acupuncture point P6 for preventing postoperative nausea and vomiting. Cochrane Database Syst Rev 2009, CD003281
- 17. Eberhart LH, Frank S, Lange H, et al.: Systematic review on the recurrence of postoperative nausea and vomiting after a first episode in the recovery room – implications for the treatment of PONV and related clinical trials. BMC Anesthesiol 2006; 6: 14.
- Kazemi-Kjellberg F, Henzi I, Tramèr MR: Treatment of established postoperative nausea and vomiting: a quantitative systematic review. BMC Anesthesiol 2001; 1: 2.
- Rüsch D, Arndt C, Martin H, Kranke P: The addition of dexamethasone to dolasetron or haloperidol for treatment of established postoperative nausea and vomiting. Anaesthesia 2007; 62: 810–7.
- Kovac AL, O'Connor TA, Pearman MH, et al.: Efficacy of repeat intravenous dosing of ondansetron in controlling postoperative nausea and vomiting: a randomized, double-blind, placebocontrolled multicenter trial. J Clin Anesth 1999; 11: 453–9.
- Eberhart LH, Morin AM, Guber D, et al.: Applicability of risk scores for postoperative nausea and vomiting in adults to paediatric patients. Br J Anaesth 2004; 93: 386–92.
- Tramer MR, Walder B: Efficacy and adverse effects of prophylactic antiemetics during patient-controlled analgesia therapy: a quantitative systematic review. Anesth Analg 1999; 88: 1354–61.
- Kranke P, Eberhart LH, Gan TJ, Roewer N, Tramèr MR: Algorithms for the prevention of postoperative nausea and vomiting: an efficacy and efficiency simulation. Eur J Anaesthesiol 2007; 24: 856–67.
- 24. Pierre S, Corno G, Benais H, Apfel CC: A risk score-dependent antiemetic approach effectively reduces postoperative nausea and vomiting – a continuous quality improvement initiative. Can J Anaesth 2004; 51: 320–5.
- Kooij FO, Klok T, Hollmann MW, Kal JE: Decision support increases guideline adherence for prescribing postoperative nausea and vomiting prophylaxis. Anesth Analg 2008; 106: 893–8.

Corresponding author

Univ.-Prof. Dr. med. Peter Kranke, MBA Klinik und Poliklinik für Anästhesiologie Universitätsklinikum Würzburg Oberdürrbacher Str. 6 97080 Würzburg, Germany kranke_p@klinik.uni-wuerzburg.de

The following people were involved with the PONV consensus statement:

Dr. med. Karin Becke, Abt. f. Anästhesie, Cnopf'sche Kinderklinik/Kliniken Hallerwiese, Nürnberg

Prof. Dr. med. Leopold H.J. Eberhart, MA; Klinik für Anästhesie und Intensivtherapie, Universitätsklinik Gießen und Marburg GmbH, Standort Marburg Dr. med. Martin Franck; Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Charité, Universitätsmedizin Berlin PD Dr. med. Arnd Hönig; Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Würzburg (Vertreter der operativen Fächer)

Prof. Dr. med. Peter Kranke, MBA; Klinik und Poliklinik für Anästhesiologie, Universitätsklinikum Würzburg

PD Dr. med. Astrid M. Morin; Klinik für Anästhesie und Intensivtherapie, Universitätsklinik Gießen und Marburg GmbH, Standort Marburg

Prof. Dr. med. Swen Piper; Abteilung für Anästhesiologie und Intensivmedizin, Stadtklinik Frankenthal

PD Dr. med. Dirk Rüsch; Klinik für Anästhesie und Intensivtherapie, Universitätsklinik Gießen und Marburg GmbH, Standort Marburg

Dr. med. Hans Treiber; Gemeinschaftspraxis Dres. Schäuffelen, Treiber & Schmelz, Ulm (Vertreter der niedergelassenen Anästhesisten)

Lothar Ullrich; Weiterbildungsstätte für Intensivpflege & Anästhesie, Universitätsklinikum Münster (Vertreter der Anästhesiepflege)

PD Dr. med. Jan Wallenborn; Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig

Sylvia Opel, Patientenfürsprecherin am Universitätsklinikum Würzburg

REVIEW ARTICLE

Nausea and Vomiting After Surgery Under General Anesthesia

An Evidence-Based Review Concerning Risk Assessment, Prevention, and Treatment

Dirk Rüsch, Leopold H. J. Eberhart, Jan Wallenborn, Peter Kranke

eReferences

- e1. Böhm K: Auszug aus dem Datenreport 2008 Gesundheit und Soziale Sicherung: Gesundheitszustand der Bevölkerung und Ressourcen der Gesundheitsversorgung. www.destatis.de/jetspeed/ portal/cms/Sites/destatis/Internet/DE/Content/Publikationen/ Querschnittsveroeffentlichungen/Datenreport/Downloads/Daten report2008Gesundheit,property=file.pdf
- e2. Lohr KN: Outcome measurement: concepts and questions. Inquiry 1988; 25: 37–50.
- e3. Macario A, Weinger M, Carney S, Kim A: Which clinical anesthesia outcomes are important to avoid? The perspective of patients. Anesth Analg 1999; 89: 652–8.
- e4. Edler AA, Mariano ER, Goliano B, Kuan C, Pentcheva K: An analysis of factors influencing postanesthesia recovery after pediatric ambulatory tonsillectomy and adenoidectomy. Anesth Analg 2007; 104: 784–9.
- e5. Patel RI, Hannallah RS: Anesthetic complications following pediatric ambulatory surgery: a 3-yr study. Anesthesiology 1988; 69: 1009–12.
- e6. Blacoe DA, Cunning E, Bell G: Paediatric day-case surgery: an audit of unplanned hospital admission Royal Hospital for Sick Children, Glasgow. Anaesthesia 2008; 63: 610–5
- e7. Schumann R, Polaner DM. Massive subcutaneous emphysema and sudden airway compromise after postoperative vomiting. Anesth Analg 1999; 89: 796–7.
- e8. Baric A:,Oesophageal rupture in a patient with postoperative nausea and vomiting. Anaesth Intensive Care 2000; 28: 325–7.
- e9. Atallah FN, Riu BM, Nguyen LB, Seguin PO, Fourcade OA: Boerhaave's syndrome after postoperative vomiting. Anesth Analg 2004; 98: 1164–6.
- e10. Reddy S, Butt MW, Samra GS: A potentially fatal complication of postoperative vomiting: Boerhaave's syndrome. Eur J Anaesthesiol 2008; 25: 257–9.
- e11. Toprak V, Keles GT, Kaygisiz Z, Tok D: Subcutaneous emphysema following severe vomiting after emerging from general anesthesia. Acta Anaesthesiol Scand 2004; 48: 917–8.
- e12. Bremner WG, Kumar CM. Delayed surgical emphysema, pneumomediastinum and bilateral pneumothoraces after postoperative vomiting. Br J Anaesth 1993; 71: 296–7.
- e13. Irefin SA, Farid IS, Senagore AJ: Urgent colectomy in a patient with membranous tracheal disruption after severe vomiting. Anesth Analg 2000; 91: 1300–2.
- e14. Zhang GS, Mathura JR Jr.: Images in clinical medicine. Painless loss of vision after vomiting. N Engl J Med 2005; 352: e16.
- e15. Scottish Intercollegiate Guidelines Network SIGN 50: A guideline developer's handbook. Revised edition 2008. www.sign.ac.uk/ guidelines/fulltext/50/index.html
- e16. Cohen MM, Duncan PG, DeBoer DP, Tweed WA: The postoperative interview: assessing risk factors for nausea and vomiting. Anesth Analg 1994; 78: 7–16.
- Stadler M, Bardiau F, Seidel L, Albert A, Boogaerts JG: Difference in risk factors for postoperative nausea and vomiting. Anesthesiology 2003; 98: 46–52.

- e18. Palazzo M, Evans R. Logistic regression analysis of fixed patient factors for postoperative sickness: a model for risk assessment. Br J Anaesth 1993; 70: 135–40.
- e19. Apfel CC, Greim CA; Haubitz I, et al.: The discriminating power of a risk score for postoperative vomiting in adults undergoing various types of surgery. Acta Anaesthesiol Scand 1998; 42: 502–9.
- e20. Eberhart LH, Hogel J, Seeling W, Staack AM, Geldner G, Georgieff M: Evaluation of three risk scores to predict postoperative nausea and vomiting. Acta Anaesthesiol Scand 2000; 44: 480–8.
- e21. Junger A, Hartmann B, Benson M, et al.: The use of an anesthesia information management system for prediction of antiemetic rescue treatment at the postanesthesia care unit. Anesth Analg 2001; 92: 1203–9.
- e22. Choi DH, Ko JS, Ahn HJ, Kim JA: A korean predictive model for postoperative nausea and vomiting. J Korean Med Sci 2005; 20: 811–5.
- e23. Toner CC, Broomhead CJ, Littlejohn IH, et al.: Prediction of postoperative nausea and vomiting using a logistic regression model. Br J Anaesth 1996; 76: 347–51.
- e24. Apfel CC, Kranke P, Eberhart LH, Roos A, Roewer N: Comparison of predictive models for postoperative nausea and vomiting. Br J Anaesth 2002; 88: 234–40.
- e25. Song D, Greilich NB, White PF, Watcha MF, Tongier WK: Recovery profiles and costs of anesthesia for outpatient unilateral inguinal herniorrhaphy. Anesth Analg 2000; 91: 876–81.
- e26. Tramer M, Moore A, McQuay H: Omitting nitrous oxide in general anaesthesia: meta-analysis of intraoperative awareness and postoperative emesis in randomized controlled trials. Br J Anaesth 1996; 76: 186–93.
- e27. Marret E, Kurdi O, Zufferey P, Bonnet F: Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology 2005; 102: 1249–60.
- e28. Roberts GW, Bekker TB, Carlsen HH, Moffatt CH, Slattery PJ, McClure AF: Postoperative nausea and vomiting are strongly influenced by postoperative opioid use in a dose-related manner. Anesth Analg 2005; 101: 1343–8.
- e29. Eberhart LH, Morin AM, Georgieff M: Dexamethasone for prophylaxis of postoperative nausea and vomiting. A meta-analysis of randomized controlled studies. Anaesthesist 2000; 49: 713–20
- e30. Henzi I, Walder B, Tramer MR: Dexamethasone for the prevention of postoperative nausea and vomiting: a quantitative systematic review. Anesth Analg 2000; 90: 186–94.
- e31. Karanicolas PJ, Smith SE, Kanbur B, Davies E, Guyatt GH: The impact of prophylactic dexamethasone on nausea and vomiting after laparoscopic cholecystectomy: a systematic review and metaanalysis. Ann Surg 2008; 248: 751–62.
- e32. Wang JJ, Ho ST, Tzeng JI, Tang CS: The effect of timing of dexamethasone administration on its efficacy as a prophylactic antiemetic for postoperative nausea and vomiting. Anesth Analg 2000; 91: 136–9.
- e33. Eberhart LH, Morin AM, Bothner U, Georgieff M: Droperidol and 5-HT3-receptor antagonists, alone or in combination, for

prophylaxis of postoperative nausea and vomiting. A metaanalysis of randomised controlled trials. Acta Anaesthesiol Scand 2000; 44: 1252–7.

- e34. Tramer MR, Reynolds DJ, Moore RA, McQuay HJ: Efficacy, doseresponse, and safety of ondansetron in prevention of postoperative nausea and vomiting: a quantitative systematic review of randomized placebo-controlled trials. Anesthesiology 1997; 87: 1277–89.
- e35. Candiotti KA, Kovac AL, Melson TI, Clerici G, Gan TJ: A randomized, double-blind study to evaluate the efficacy and safety of three different doses of palonosetron versus placebo for preventing postoperative nausea and vomiting. Anesth Analg 2008; 107: 445–51.
- e36. Kovac AL, Eberhart L, Kotarski J, Clerici G, Apfel C: A randomized, double-blind study to evaluate the efficacy and safety of three different doses of palonosetron versus placebo in preventing postoperative nausea and vomiting over a 72-hour period. Anesth Analg 2008; 107: 439–44.
- e37. Sun R, Klein KW, White PF: The effect of timing of ondansetron administration in outpatients undergoing otolaryngologic surgery. Anesth Analg 1997; 84: 331–6.
- e38. Henzi I, Sonderegger J, Tramer MR: Efficacy, dose-response, and adverse effects of droperidol for prevention of postoperative nausea and vomiting. Can J Anaesth 2000; 47: 537–51.
- e39. Lee Y, Wang PK, Lai HY, Yang YL, Chu CC, Wang JJ: Haloperidol is as effective as ondansetron for preventing postoperative nausea and vomiting. Can J Anaesth 2007; 54: 349–54.
- e40. Rosow CE, Haspel KL, Smith SE, Grecu L, Bittner EA: Haloperidol versus ondansetron for prophylaxis of postoperative nausea and vomiting. Anesth Analg 2008; 106: 1407–9.
- e41. Yang YL, Lai HY, Wang JJ, et al.: The timing of haloperidol administration does not affect its prophylactic antiemetic efficacy. Can J Anaesth 2008; 55: 270–5.
- e42. Kranke P, Morin AM, Roewer N, Eberhart LH: Dimenhydrinate for prophylaxis of postoperative nausea and vomiting: a metaanalysis of randomized controlled trials. Acta Anaesthesiol Scand 2002; 46: 238–44.
- e43. Kranke P, Morin AM, Roewer N, Wulf H, Eberhart LH: The efficacy and safety of transdermal scopolamine for the prevention of postoperative nausea and vomiting: a quantitative systematic review. Anesth Analg 2002; 95: 133–43.
- e44. Gan TJ, Apfel CC, Kovac A, et al.: A randomized, double-blind comparison of the NK1 antagonist, aprepitant, versus ondansetron for the prevention of postoperative nausea and vomiting. Anesth Analg 2007; 104: 1082–9.
- e45. Diemunsch P, Gan TJ, Philip BK, et al.: Single-dose aprepitant vs ondansetron for the prevention of postoperative nausea and vomiting: a randomized, double-blind phase III trial in patients undergoing open abdominal surgery. Br J Anaesth 2007; 99: 202–11.
- e46. Orhan-Sungur M, Kranke P, Sessler D, Apfel CC: Does supplemental oxygen reduce postoperative nausea and vomiting? A meta-analysis of randomized controlled trials. Anesth Analg 2008; 106: 1733–8.
- e47. Morin AM, Betz O, Kranke P, Geldner G, Wulf H, Eberhart LH: Is ginger a relevant antiemetic for postoperative nausea and vomiting? Anasthesiol Intensivmed Notfallmed Schmerzther 2004; 39: 281–5.
- e48. Teran L, Hawkins JK: The effectiveness of inhalation isopropyl alcohol vs. granisetron for the prevention of postoperative nausea and vomiting. Aana J 2007; 75: 417–22.
- e49. Ali SZ, Taguchi A, Holtmann B, Kurz A: Effect of supplemental pre-operative fluid on postoperative nausea and vomiting. Anaesthesia 2003; 58: 780–4.
- e50. Magner JJ, McCaul C, Carton E, Gardiner J, Buggy D: Effect of intraoperative intravenous crystalloid infusion on postoperative nausea and vomiting after gynaecological laparoscopy: comparison of 30 and 10 ml kg⁻¹. Br J Anaesth 2004; 93: 381–5.

- e51. Maharaj CH, Kallam SR, Malik A, Hassett P, Grady D, Laffey JG: Preoperative intravenous fluid therapy decreases postoperative nausea and pain in high risk patients. Anesth Analg 2005; 100: 675–82.
- e52. Dagher CF, Abboud B, Richa F, et al.: Effect of intravenous crystalloid infusion on postoperative nausea and vomiting after thyroidectomy: a prospective, randomized, controlled study. Eur J Anaesthesiol 2009; 26: 188–91.
- e53. Lee A, Done ML: Stimulation of the wrist acupuncture point P6 for preventing postoperative nausea and vomiting. Cochrane Database Syst Rev 2004, CD003281
- e54. Abraham J: Acupressure and acupuncture in preventing and managing postoperative nausea and vomiting in adults. J Perioper Pract 2008; 18: 543–51.
- e55. Scuderi PE, James RL, Harris L, Mims GR 3rd: Multimodal antiemetic management prevents early postoperative vomiting after outpatient laparoscopy. Anesth Analg 2000; 91: 1408–14.
- e56. Habib AS, Gan TJ: The effectiveness of rescue antiemetics after failure of prophylaxis with ondansetron or droperidol: a preliminary report. J Clin Anesth 2005; 17: 62–5.
- e57. Habib AS, Reuveni J, Taguchi A, White WD, Gan TJ: A comparison of ondansetron with promethazine for treating postoperative nausea and vomiting in patients who received prophylaxis with ondansetron: a retrospective database analysis. Anesth Analg 2007; 104: 548–51.
- e58. Sossai R, Jöhr M, Kistler W, Gerber H, Scharli AF: Postoperative vomiting in children. A persisting unsolved problem. Eur J Pediatr Surg 1993; 3: 206–8.
- e59. Czarnetzki C, Elia N, Lysakowski C, et al.: Dexamethasone and risk of nausea and vomiting and postoperative bleeding after tonsillectomy in children: a randomized trial. JAMA 2008; 300: 2621–30.
- e60. Becke K, Kranke P, Weiss M, Kretz FJ, Strauß J: Prophylaxe von postoperativer Übelkeit und Erbrechen im Kindesalter bei Adeno-/ Tonsillektomien mit Dexamethason – Stellungnahme des wissenschaftlichen Arbeitskreises Kinderanästhesie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Anästh Intensivmed 2009, 7: 496–497.
- e61. Hopkins D, Shipton EA, Potgieter D, et al.: Comparison of tramadol and morphine via subcutaneous PCA following major orthopaedic surgery. Can J Anaesth 1998; 45: 435–42.
- e62. Pang WW, Mok MS, Lin CH, Yang TF, Huang MH: Comparison of patient-controlled analgesia (PCA) with tramadol or morphine. Can J Anaesth 1999; 46: 1030–5.
- e63. Silvasti M, Svartling N, Pitkanen M, Rosenberg PH: Comparison of intravenous patient-controlled analgesia with tramadol versus morphine after microvascular breast reconstruction. Eur J Anaesthesiol 2000; 17: 448–55.
- e64. Erolcay H, Yuceyar L: Intravenous patient-controlled analgesia after thoracotomy: a comparison of morphine with tramadol. Eur J Anaesthesiol 2003; 20: 141–6.
- e65. Casali R, Lepri A, Cantini Q, Landi S, Novelli GP: Comparative study of the effects of morphine and tramadol in the treatment of postoperative pain. Minerva Anestesiol 2000; 66: 147–52.
- e66. Sudheer PS, Logan SW, Terblanche C, Ateleanu B, Hall JE: Comparison of the analgesic efficacy and respiratory effects of morphine, tramadol and codeine after craniotomy. Anaesthesia 2007; 62: 555–60.
- e67. Hadi MA, Kamaruljan HS, Saedah A, Abdullah NM: A comparative study of intravenous patient-controlled analgesia morphine and tramadol in patients undergoing major operation. Med J Malaysia 2006; 61: 570–6.
- e68. Dingus DJ, Sherman JC, Rogers DA, DiPiro JT, May R, Bowden TA Jr: Buprenorphine versus morphine for patient-controlled analgesia after cholecystectomy. Surg Gynecol Obstet 1993; 177: 1–6.
- e69. Capogna G, Celleno D, Sebastiani M, Costantino P, Reggio S: Continuous intravenous infusion with patient-controlled anesthesia for postoperative analgesia in cesarean section: morphine versus buprenorphine. Minerva Anestesiol 1989; 55: 33–8.

- e70. Ho ST, Wang JJ, Liu HS, Tzeng JI, Liaw WJ: The analgesic effect of PCA buprenorphine in Taiwan's gynecologic patients. Acta Anaesthesiol Sin 1997; 35: 195–9.
- Harmer M, Slattery PJ, Rosen M, Vickers MD: Intramuscular on demand analgesia: double blind controlled trial of pethidine, buprenorphine, morphine, and meptazinol. Br Med J (Clin Res Ed) 1983; 286: 680–2.
- e72. Dopfmer UR, Schenk MR, Kuscic S, Beck DH, Dopfmer S, Kox WJ: A randomized controlled double-blind trial comparing piritramide and morphine for analgesia after hysterectomy. Eur J Anaesthesiol 2001; 18: 389–93.
- e73. Breitfeld C, Peters J, Vockel T, Lorenz C, Eikermann M: Emetic effects of morphine and piritramide. Br J Anaesth 2003; 91: 218–23.
- e74. Coda BA, O'Sullivan B, Donaldson G, Bohl S, Chapman CR, Shen DD: Comparative efficacy of patient-controlled administration of morphine, hydromorphone, or sufentanil for the treatment of oral mucositis pain following bone marrow transplantation. Pain 1997; 72: 333–46.
- e75. Rapp SE, Egan KJ, Ross BK, Wild LM, Terman GW, Ching JM: A multidimensional comparison of morphine and hydromorphone patient-controlled analgesia. Anesth Analg 1996; 82: 1043–8.
- e76. Silvasti M, Rosenberg P, Seppala T, Svartling N, Pitkanen M: Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Acta Anaesthesiol Scand 1998; 42: 576–80.
- e77. Kucukemre F, Kunt N, Kaygusuz K, Kiliccioglu F, Gurelik B, Cetin A: Remifentanil compared with morphine for postoperative patientcontrolled analgesia after major abdominal surgery: a randomized controlled trial. Eur J Anaesthesiol 2005; 22: 378–85.
- e78. Gurbet A, Goren S, Sahin S, Uckunkaya N, Korfali G: Comparison of analgesic effects of morphine, fentanyl, and remifentanil with intravenous patient-controlled analgesia after cardiac surgery. J Cardiothorac Vasc Anesth 2004; 18: 755–8.
- e79. Howell PR, Gambling DR, Pavy T, McMorland G, Douglas MJ: Patient-controlled analgesia following caesarean section under general anaesthesia: a comparison of fentanyl with morphine. Can J Anaesth 1995; 42: 41–5.
- e80. Castro C, Tharmaratnam U, Brockhurst N, Tureanu L, Tam K, Windrim R: Patient-controlled analgesia with fentanyl provides effective analgesia for second trimester labour: a randomized controlled study. Can J Anaesth 2003; 50: 1039–46.

- e81. Watt JW, Soulsby NR: Fentanyl versus morphine for patientcontrolled analgesia. Anaesthesia 1995; 50: 470–1.
- e82. Herrick IA, Ganapathy S, Komar W, et al.: Postoperative cognitive impairment in the elderly. Choice of patient-controlled analgesia opioid. Anaesthesia 1996; 51: 356–60.
- e83. Woodhouse A, Hobbes AF, Mather LE, Gibson M: A comparison of morphine, pethidine and fentanyl in the postsurgical patientcontrolled analgesia environment. Pain 1996; 64: 115–21.
- e84. Ginsberg B, Gil KM, Muir M, Sullivan F, Williams DA, Glass PS: The influence of lockout intervals and drug selection on patientcontrolled analgesia following gynecological surgery. Pain 1995; 62: 95–100.
- e85. Lee Y, Lai HY, Lin PC, Lin YS, Huang SJ, Shyr MH: A dose ranging study of dexamethasone for preventing patient-controlled analgesia-related nausea and vomiting: a comparison of droperidol with saline. Anesth Analg 2004; 98: 1066–71.
- e86. Dresner M, Dean S, Lumb A, Bellamy M: High-dose ondansetron regimen vs droperidol for morphine patient-controlled analgesia. Br J Anaesth 1998; 81: 384–6.
- e87. Biedler A, Wermelt J, Kunitz O, et al.: A risk adapted approach reduces the overall institutional incidence of postoperative nausea and vomiting. Can J Anaesth 2004; 51: 13–9.
- e88. van den Bosch JE, Kalkman CJ, Vergouwe Y, et al.: Assessing the applicability of scoring systems for predicting postoperative nausea and vomiting. Anaesthesia 2005; 60: 323–31.
- e89. Engel JM, Junger A, Hartmann B, et al.: Performance and customization of 4 prognostic models for postoperative onset of nausea and vomiting in ear, nose, and throat surgery. J Clin Anesth 2006; 18: 256–63.
- e90. Frank M, Radtke, FM, Baumeyer A, Kranke P, Wernecke KD, Spies CD: Behandlungsrichtlinien für "postoperative nausea and vomiting" – Wie gut gelingt der Wissenstransfer hin zu einer besseren klinischen Versorgung. Anaesthesist 2010; 59:524–8.
- e91. Kranke P, Schuster F, Eberhart LH: Recent advances, trends and economic considerations in the risk assessment, prevention and treatment of postoperative nausea and vomiting. Expert Opin Pharmacother 2007; 8: 3217–35.
- e92. Wallenborn J, Kranke P: Palonosetron hydrochloride in the prevention and treatment of postoperative nausea and vomiting. Clinical Medicine: Therapeutics 2010; 2:387–99.