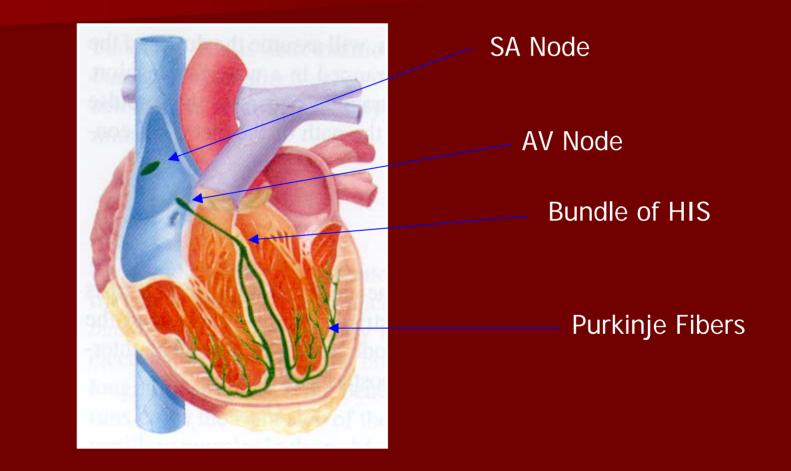


Understanding ECG's

February 2003


Flight Medic Course (ACLS)

Objectives

- Describe the basic approach to interpretation of ECG strips
- Explain the five steps used in interpretation of ECG strips
- Explain how to calculate heart rate, PRI, and QRS complex, given a 6-second strip
- Identify different types of ECG strips pertaining to ACLS

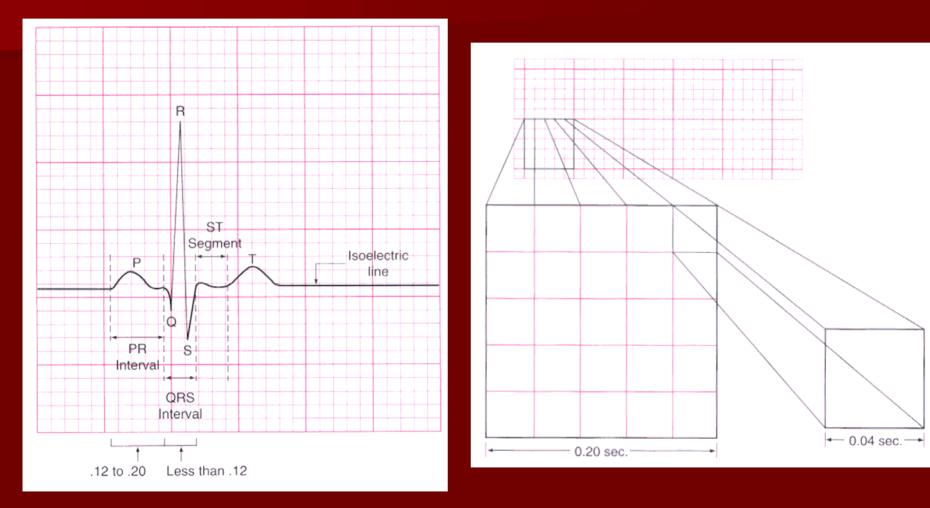
The Electrical Conduction System

The Electrical Conduction System

 SA node: Fastest rate of automaticity. "Primary" pacemaker of the heart.
 – Rate: 60 to 100 bpm
 AV node: Has a delay which allows for atrial contraction and a more filling of the ventricles.

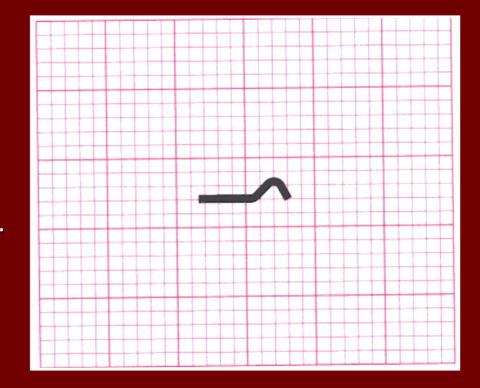
- Rate: 40-60 bpm

The Electrical Conduction System

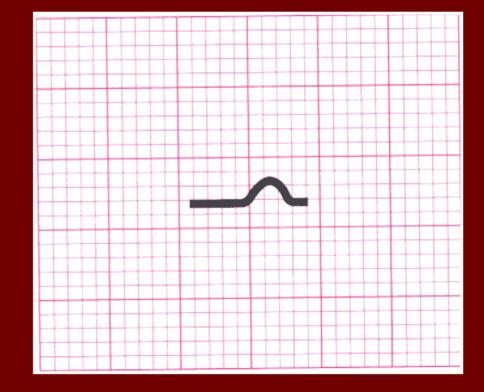

- Bundle of His: Has the ability to selfinitiate electrical activity
 - Rate: 40-60 bpm
- Purkinje Fibers: Network of fibers that carry an electrical impulses directly to ventricular muscle cells.
 - Rate: 20-40 bpm

Information Obtainable from ECG Rhythm Strip Analysis

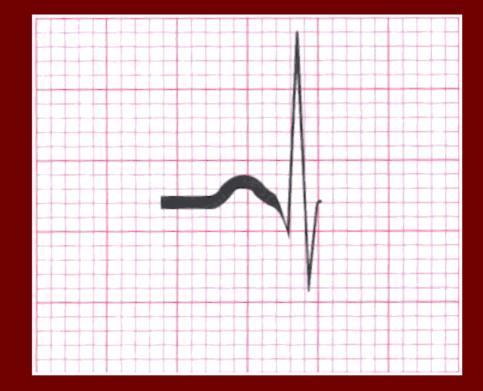
TABLE 5-1 INFORMATION OBTAINABLE FROM EKG RHYTHM STRIP ANALYSIS			
Heart rate	Yes		
Rhythm/regularity	Yes		
Impulse conduction time intervals	Yes		
Abnormal conduction pathways	Yes		
Pumping action		No	
Cardiac output		No	
Blood pressure		No	
Cardiac muscle hypertrophy		No	


The Electrocardiogram

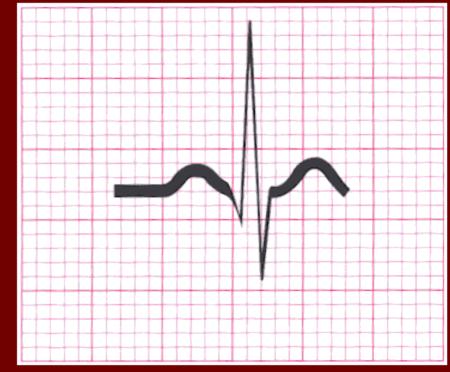
- Defines the graphic representation of the electrical activity of the heart
- The printed record of the electrical activity of the heart is called a rhythm strip or an ECG strip.


P-Wave

- SA node fires, sends the electrical impulse outward to stimulate both atria and manifests as a P-wave.
- Approximately 0.10 seconds in length

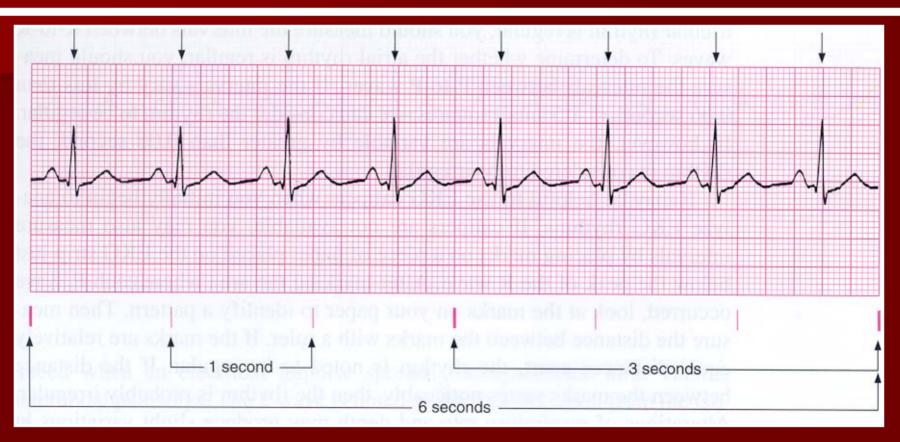

PR Interval (PRI)

 Time which impulse travels from the SA node to the atria and downward to the ventricles


QRS Complex

- Impulse from the Bundle of HIS throughout the ventricular muscles
- Measures less than
 0.12 seconds or less
 than 3 small squares
 on the ECG paper

T-Wave:


- Ventricular repolarization, meaning no associated activity of the ventricular muscle
- Resting phase of the cardiac cycle

Interpretation of an ECG Strip

Step 1: Heart Rate
Step 2: Heart Rhythm
Step 3: P-Wave
Step 4: PRI
Step 5: QRS Complex

Heart Rate

 6-Second Method: Have a six second strip, count the QRS complexes and multiple by 10.

Heart Rate

• What is the rate on this rhythm strip?

Heart Rhythm

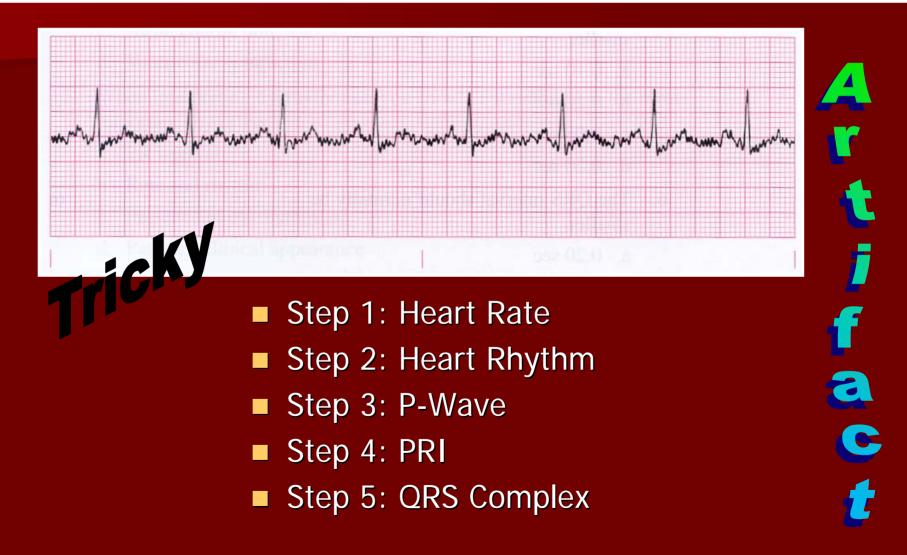
- Heart rhythm are classified as regular or irregular.
- Can calculate the heart rhythm involves establishing a pattern of QRS complexes occurrence.
- Measure ventricular rhythm by measuring the interval between R-to-R waves and atrial rhythm by measuring the P-to-P waves.
- Interval > than 0.06 seconds, irregular.

The P-Wave

■ 5 questions:

- 1. Are P-Waves present?
- 2. Are P-Waves occurring regularly?
- 3. Is there a P-Wave for each QRS?
- 4. Are the P-Waves smooth, rounded, and upright in appearance, or are they inverted?
- 5. Do all P-Waves look similar?

The PRI


- Normal length of the PRI is 0.12 to 0.20 second (3-5 small squares)
- 3 Questions to ask:
 - 1. Are PRI greater that 0.20 seconds?
 - 2. Are PRI less than 0.12 seconds?
 - 3. Are the PRI's constant across the ECG strip?

The QRS Complex

3 questions to ask:

- 1. Are QRS intervals greater than 0.12 second (wide)? If so, the complex may be ventricular in orgin.
- 2. Are QRS intervals less than 0.12 seconds (narrow)? If so, the complex is most likely supraventricular in origin.
- 3. Are QRS complexes similar in appearance across the ECG strip?

First Rhythm Strip to Identify

Artifact

Four Common Causes:

- Patient Movement
- Loose or defective electrodes
- Improper grounding
- Faulty ECG apparatus

Patient assessment is critical

Types of Rhythms

Rate:

- Bradycardia = rate of <60 bpm</p>
- Normal = rate of 60-100 bpm
- Tachycardia = rate of >100-160 bpm

Where its coming from:

- Sinus; SA node
- Atrial; SA node fails, impulse comes from the atria (internodal or the AV node)
- Ventricular; SA node or AV junction fails, ventricles will shoulder responsibility of pacing the heart

Normal Sinus Rhythm (NSR)
Sinus Bradycardia
Sinus Tachycardia

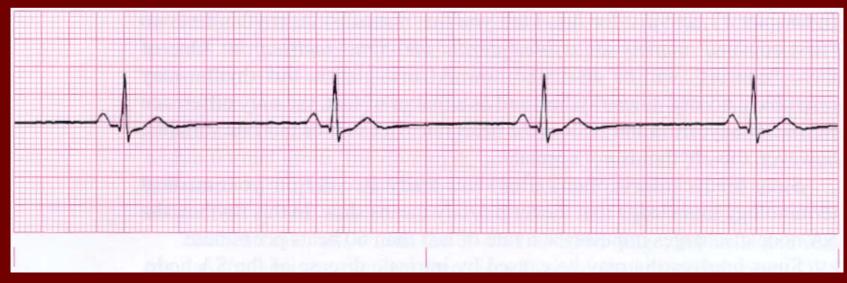

NSR Rhythm

TABLE 7-3 NORMAL SINUS RHYTHM Question 1–5	
What is the rate?	60–100 BPM
What is the rhythm?	Atrial rhythm regular Ventricular rhythm regular
Is there a P wave before each QRS? Are the P waves upright and uniform?	Yes Yes
What is the length of the PR interval?	0.12–0.20 sec (3–5 small squares)
Do all the QRS complexes look alike? The length of the QRS complexes is ?	Yes Less than 0.12 sec (3 small squares)

Sinus Bradycardia Rhythm

TABLE 7-4 SINUS BRADYCARDIA RHY	/THM
Questions 1–5	
What is the rate?	LESS THAN 60 BPM
What is the rhythm?	Atrial rhythm regular Ventricular rhythm regular
Is there a P wave before each QRS? Are the P waves upright and uniform?	Yes Yes
What is the length of the PR interval?	0.12–0.20 sec (3–5 small squares)
Do all the QRS complexes look alike? The length of the QRS complexes is ?	Yes Less than 0.12 sec (3 small squares)

Sinus Tachycardia Rhythm

TABLE 7-5 SINUS TACHYCARDIA RH	үтнм
Questions 1–5	
What is the rate?	100–160 BPM
What is the rhythm?	Atrial rhythm regular Ventricular rhythm regular
Is there a P wave before each QRS? Are the P waves upright and uniform?	Yes Yes
What is the length of the PR interval?	0.12–0.20 sec (3–5 small squares)
Do all the QRS complexes look alike? The length of the QRS complexes is ?	Yes Less than 0.12 sec (3 small squares

Atrial Rhythms

- SA node fails to generate an impulse, the atrial tissue or areas in the internodal pathways may initiate an impulse.
- These are called <u>atrial dysrhythmias</u>
- Generally not considered life-threatening or lethal careful and deliberate patient assessment must be continuous.

Types of Atrial Rhythms

Atrial Flutter

- Atrial Fibrillation
- Supraventricular Tachycardia

Atrial Flutter

TABLE 8-3 ATRIAL FLUTTER Questions 1–5	
What is the rate?	Atrial—250–300 BPM Ventricular—variable
What is the rhythm?	Atrial—regular Ventricular—regular or irregular
Is there a P wave before each QRS? Are the P waves upright and uniform?	Normal P waves are absent; replaced by F waves (sawtooth)
What is the length of the PR interval?	Not measurable
Do all the QRS complexes look alike?	Yes
The length of the QRS complexes is?	Usually less than 0.12 sec (3 small squares)

Atrial Fibrillation

TABLE 8-4 ATRIAL FIBRILLATION

Questions 1-5

What is the rate?	Atrial—350–400 BPM Ventricular—variable
What is the rhythm?	Irregularly irregular
Is there a P wave before each Are the P waves upright and u	
What is the length of the PR in	terval? Not discernable
Do all the QRS complexes look The length of the QRS comple	

Supraventricular Tachycardia

TABLE 8-5 SUPRAVENTRICULAR TACHYCARDIA

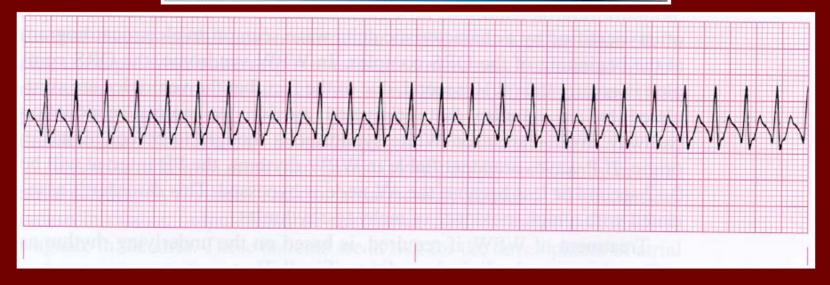
Questions 1-5

What is the rate?

What is the rhythm?

Is there a P wave before each QRS? Are the P waves upright and uniform?

What is the length of the PR interval?


Do all the QRS complexes look alike? The length of the QRS complexes is ...? Atrial—150–250 BPM Ventricular—150–250 BPM

Regular

Usually not discernable, especially at the high-rate range

Usually not discernable

Yes Usually less than 0.12 sec

Ventricular Rhythms

- SA node or the AV junctional tissue fails to initiate an electrical impulse, the ventricles will shoulder the responsibility of pacing the heart.
- This group of rhythms are called ventricular dysrhythmias.
- An electrical impulse can be instigated from any pacemaker cell in the ventricles, including the bundle branches or the fibers of the Purkinje fibers.

Types of Ventricular Rhythms

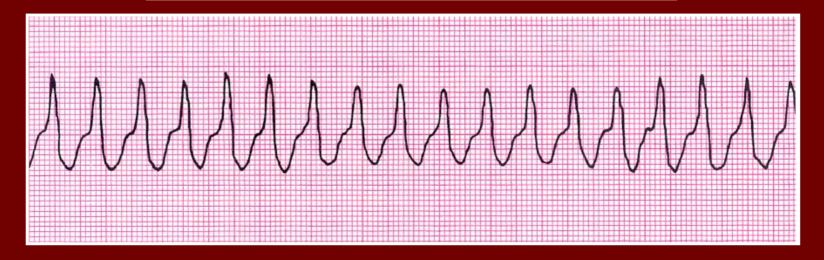
- Premature Ventricular Complexes
- Ventricular Tachycardia
- Torsades de Pointes
- Ventricular Fibrillation
- Asystole
- Pulseless Electrical Activity (PEA)

Premature Ventricular Complexes (PVCs)

TABLE 10-3 PREMATURE VENTRICULAR COMPLEXES Questions 1-5 What is the rate? Dependent on rate of underlying rhythm and number of PVCs Occasionally irregular; regular if What is the rhythm? interpolated PVC No P waves associated with PVC: Is there a P wave before each ORS? Are the P waves upright and uniform? P waves of underlying rhythm may be present PRI not present with PVCs What is the length of the PR interval? The length of the QRS complexes is ...? Greater than or equal to 0.12 sec (3 What do the QRS complexes look like? small squares); usually wide and bizarre

Ventricular Tachycardia

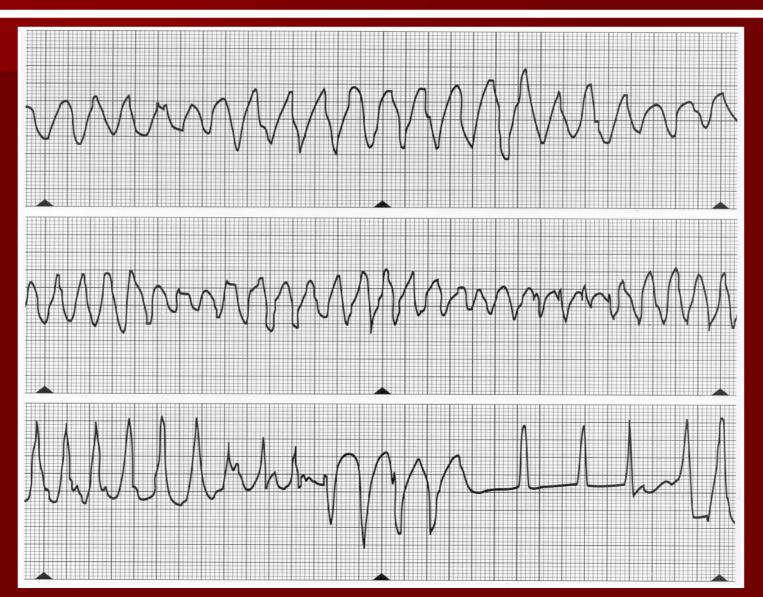
TABLE 10-5 VENTRICULAR TACHYCARDIA RHYTHM


Ouestions 1-5 What is the rate? What is the rhythm? Is there a P wave before each QRS? What is the length of the PR interval? None Do all the QRS complexes look alike? The length of the QRS complexes is . . . ?

100-250 BPM

Atrial rhythm not distinguishable Ventricular rhythm usually regular

May be present or absent; not associated with QRS complexes


Yes (except in torsades rhythm): bizarre QRS morphology Greater than 0.12 sec

Torsades de Pointes

- French term that signifies the "twisting of the points".
- May wax and wane in amplitude and may "flip" or "twist" on its electrical axes.
- Similar to ventricular tachycardia
- Caused by hypomagnesemia or by antiarrhythmic drugs


Torsades de Pointes

V. Fibrillation

Questions 1–5	
What is the rate?	Rate cannot be discerned
What is the rhythm?	Rapid, unorganized Rhythm not distinguishable
Is there a P wave before each QRS?	No
What is the length of the PR interval?	None present
Do all the QRS complexes look alike? The length of the QRS complexes is ?	None present

E 40 0 MENTRICIU AD EIDDU

Asystole

TABLE 10-7 VENTRICULAR ASYSTOLE Questions 1–5		
What is the rate?	Absent	
What is the rhythm?	Absent Rhythm not distinguishable	
Is there a P wave before each QRS?	No	
What is the length of the PR interval?	None present	
Do all the QRS complexes look alike? The length of the QRS complexes is ?	None present	

Pulseless Electrical Activity (PEA)

- The absence of a palpable pulse and myocardial muscle activity with the presence of organized electrical activity (excluding VT and VF) on cardiac monitor.
- It is <u>not</u> an actual rhythm, it represents a clinical condition wherein the patient is clinically dead, despite the fact that some type of organized rhythm appears on the monitor.

Types of Heart Blocks

- First Degree AV Block
- Second-Degree AV Block (Mobitz Type I) or Wenckebach
- Second-Degree AV Block (Mobitz Type II)
- Third Degree AV Block (Complete)

First Degree AV Block

TABLE 11-1 FIRST-DEGREE AV BLOCK

Questions 1-5

Based on the rate of the underlying What is the rate? rhythm Usually regular What is the rhythm? Is there a P wave before each QRS? Yes Are the P waves upright and uniform? Yes Greater than 0.20 sec (5 small What is the length of the PR interval? squares) Do all the QRS complexes look alike? Yes Less than 0.12 sec (3 small squares) The length of the QRS complexes is . . . ?

Second-Degree AV Block (Mobitz Type I) or Wenckebach

TABLE 11-2 SECOND-DEGREE BLOCK, MOBITZ TYPE I

Questions 1-5

What is the rate?

What is the rhythm?

Is there a P wave before each QRS? Are the P waves upright and uniform?

What is the length of the PR interval?

Do all the QRS complexes look alike? The length of the QRS complexes is ...? Atrial unaffected Ventricular rate is usually slower than atrial

Atrial rhythm regular Ventricular rhythm irregular

Yes, for conducted beats

Progressively prolongs until a QRS is not conducted

Yes Less than 0.12 sec

Second-Degree AV Block (Mobitz Type I) or Wenckebach

Second-Degree AV Block (Mobitz Type II)

TABLE 11-3 SECOND-DEGREE BLOCK, TYPE MOBITZ II

Questions 1-5

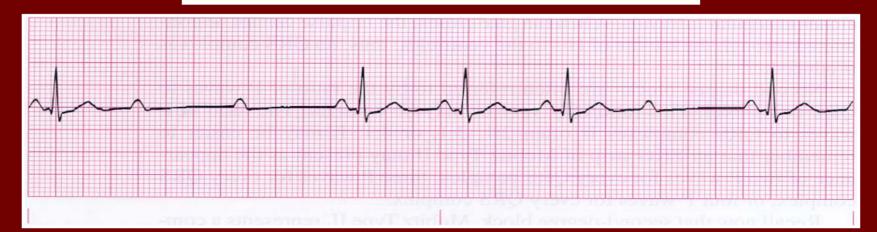
What is the rate?

What is the rhythm?

Is there a P wave before each QRS?

Are the P waves upright and uniform?

What is the length of the PR interval?


Do all the QRS complexes look alike? The length of the QRS complexes is ...? Atrial rate regular Ventricular rate may be bradycardic

Atrial rhythm regular Ventricular rhythm irregular

Yes; some P waves are not followed by a QRS complex P waves are usually upright and uniform

Constant for conducted beats

Yes; intermittently absent Greater than or equal to 0.12 sec

Third Degree AV Block (Complete)

TABLE 11-4 THIRD-DEGREE (COMPL Questions 1–5	ETE) HEART BLOCK
What is the rate?	Atrial rate usually 60 to 100 BPM Ventricular rate based on site of escape pacemaker
What is the rhythm?	Atrial rhythm regular Ventricular rhythm regular
Is there a P wave before each QRS? Are the P waves upright and uniform?	No relationship to QRS complexes Yes
What is the length of the PR interval?	Totally variable; no pattern
Do all the QRS complexes look alike? The length of the QRS complexes is ?	Yes Based on site of escape pacemaker

Third Degree AV Block (Complete)

Artificial Pacemaker

TABLE 12-1 ARTIFICIAL PACEMAKER RHYTHM

Questions 1-5

What is the rate?

What is the rhythm?

Is there a P wave before each QRS? Are the P waves upright and uniform?

What is the length of the PR interval?

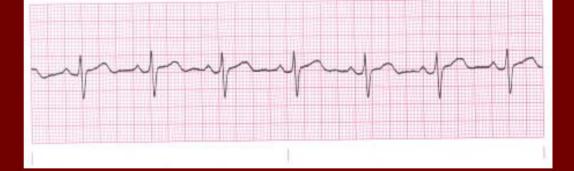
Do all the QRS complexes look alike? The length of the QRS complexes is . . . ? Varies according to preset rate of pacemaker (usually 70 BPM)

Regular if pacing is fixed, irregular if demand-paced

May be absent or present, based on type of artificial pacemaker

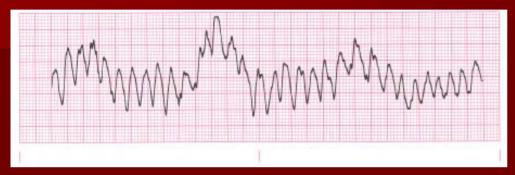
Variable, depending on type of artificial pacemaker

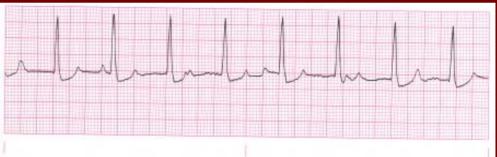
Usually; greater than or equal to 0.12 sec; bizarre morphology; presence of spikes



Practice Strips

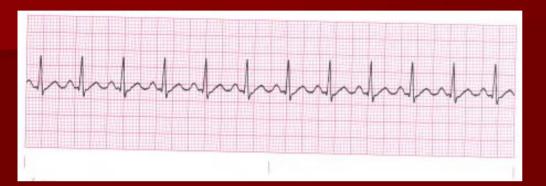
Atrial Fibrillation with PVC's




Sinus Bradycardia

Practice Strips

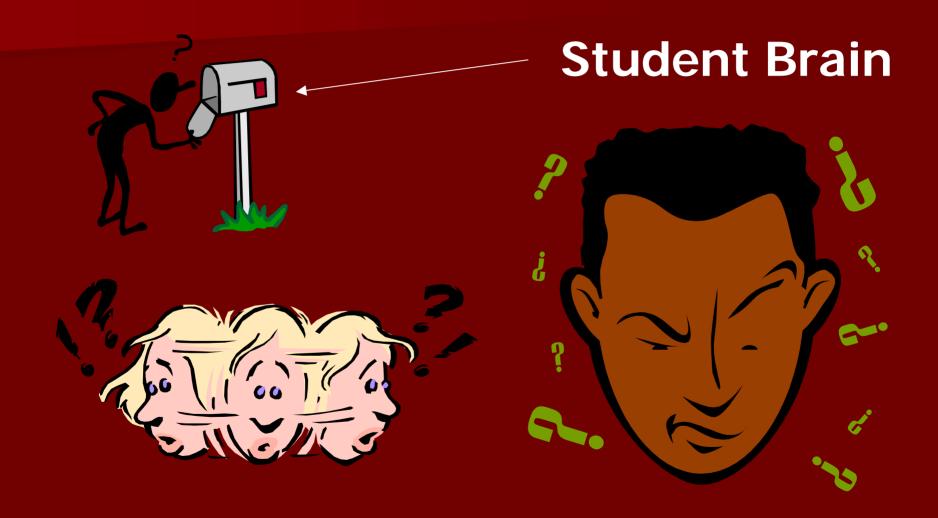
Ventricular Fibrillation


Third-Degree Heart Block

Asystole

Practice Strips

Sinus Tachycardia


Second-Degree AV Block Mobitz Type I, Wenckebach

Atrial Flutter

Questions/Confused

